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ABSTRACT

Background: Extracellular matrix (ECM) produced by tissue decellularization processes as 
a biological scaffold due to its unique properties compared to other scaffolds for migration 
and implantation of stem cells have been used successfully in the field of tissue engineering 
and regenerative medicine in the last years. The objective of this manuscript was to provide 
an overview of the chemical decellularization methods, evaluation of decellularized ECM and 
the potential effect of the chemical decellularization agents on the biochemical composition. 
Methods: We searched in Google Scholar, PubMed, Scopus, and Science Direct. The literature 
search was done by using the following keywords: “ECM, biologic scaffold, decellularization, 
chemical methods, tissue engineering.” We selected articles have been published from 2000 to 
2016, and 15 full texts and 97 abstracts were reviewed. Results: Employing an optimization 
method to minimize damage to the ECM ultrastructure as for a result of the lack of reduction in 
mechanical properties and also the preservation of essential proteins such as laminin, fibronectin, 
Glycosaminoglycans (GAGs), growth factor is required. Various methods include chemical, 
physical and enzymatic technics were studied. However, on each of these methods can have 
undesirable effects on ECM. Conclusion: It is suggested that instead of the Sodium dodecyl 
sulfate (SDS) which have high strength degradation, we can use zwitterionic separately or in 
combination with SDS. Tributyl phosphate (TBP) due to its unique properties can be used in 
decellularization process.

INTRODUCTION 

Using extracellular matrices (ECM), as a bioscaffold for tis-
sue regeneration has been welcomed in the past few years, 
therefore,  in recent years (1-7), various methods from dif-
ferent tissues have been tested to produce the healthy ECM. 
So far, ECM from various tissues has been made, and ef-
forts have been put to use some of these biological scaf-
folds in tissue engineering and regeneration of organs. 
As regards tissues that have been used to produce ECM, 
heart (8-11), blood vessels (12,13), skin (14), nerve (15), 
skeletal muscle (16), tendon (17), small intestine (18), oral 
mucosa (19-21), jawbone and teeth (22-24), sinusoidal mu-
cosa (25), liver (26) and lung (27) can be noted. The unique 
structure of the ECM causes the cells with tissue repair 
properties, to multiply within the ECM. Using ECM reduc-
es the immune responses, thereupon occasion enhances the 
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success rate of tissue transplantation and lack of tissue re-
jection. Also, ECM contains factors for cell growth and pro-
liferation, as well as containing non-collagenous proteins 
potentially, including laminin and fibronectin to increase 
the adhesion of cells to the scaffold (28) as well glycos-
aminoglycans (GAGs). Various methods, including physi-
cal, chemical and biological technics are used throughout 
the process of decellularization; however, the most effective 
decellularization process results from the combination of 
physical, chemical, and biological methods. Other import-
ant factors such as tissue type, density, and tissue thickness 
are also involved (5). The aim of this study was review-
ing the chemical methods that are used in decellularization, 
evaluation of there, and effects of each chemical method on 
biochemical compounds, structural and mechanical behav-
ior of ECM.
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CHEMICAL METHODS

Using chemical methods facilitates decellularization which 
includes chemical agents, acid and bases, detergents, alco-
hols, hypotonic and hypertonic solutions.

Acid and Base

Acids and bases cause nucleic acid decomposition and hy-
drolysis of cytoplasmic components (1,29). Acids and Bas-
es that are used in decellularization protocols are acetic 
acid (30), peracetic acid (PAA), hydrochloric acid, sulfuric 
acid, ammonium hydroxide, calcium hydroxide, and sodium 
hydroxide (3).

PAA is commonly used throughout the process of de-
cellularization (31). It can maintain growth factors such as 
growth factor β, VEGF, laminin and fibronectin, which are 
involved in adhesion of cells to the ECM (32-35) and have 
been established to have no adverse effect on the mechanical 
properties of ECM (36).

It also has been disinfecting, and microbial enzymes ox-
idizing properties (37,38). PAA concentration of 0.1% has 
been successfully used in decellularization of small intestine 
submucosa (SIS) and urinary bladder matrix (UBM) (39,40). 
One of the problems with using acids throughout the process 
of decellularization is the deletion GAG from the ECM (41).

Bases are mostly used to remove hair from skin sam-
ples before starting the process of decellularization (42,43); 
however, the damaging effects of bases on the ECM and 
its collagenous protein constituents, reduce the mechanical 
properties of ECM and removes the growth factors from the 
ECM (44).

Hypotonic and Hypertonic Solutions

Hypotonic and hypertonic solutions cause cell lysis by in-
ducing osmotic shock in the tissue and breakdown of the cell 
membrane in tissues or organs (44-48). Hypertonic solutions 
have the ability to separate protein from DNA (49). One 
of the reasons for using hypotonic solutions is a minimal 
change in the structure of the ECM (50). Moreover, hypoton-
ic and hypertonic solutions are used for washing cell debris, 
but they are not able to clean and remove cell debris from the 
tissues entirely (51-53).

Alcohols

Glycerol is one of the most commonly used alcohols in de-
cellularization which causes cell lysis, dehydration (54), and 
effectively removes lipids. It has more detergency and de-
composing capabilities compared to lipase (42,55). Metha-
nol along with chloroform are used as the other compounds 
for delipidation are (54). One of the problems of using meth-
anol and ethanol to fix tissues is protein precipitation. There-
fore, one should be cautious in using methanol and ethanol 
in the process of decellularization because it may damage 
the protein structure of ECM and affect its mechanical prop-
erties (43,56-60). Lipid occasion calcification, so alcohol is 
considered as an anti-calcifying agent (56,61).

Detergents

Detergents are amphipathic molecules with a polar and aqua-
phobic head that can dissolve hydrophobic compounds in 
water. Detergents are used in 2-dimensional electrophoresis 
in addition to being used in the process of decellulariza-
tion (62). Detergents are classified based on their polar head 
into three categories as follows: ionic, non-ionic and ion-di-
pole.

Ionic Detergent

Ionic detergents are effectively used in removal and dissolu-
tion of membrane proteins and DNA associated proteins (63). 
Sodium dodecyl sulfate (SDS) is widely used in the process of 
decellularization (63). In comparison with other detergents, 
SDS has more effectiveness to the removal of the cell debris 
such as nuclear and cytoplasmic compounds from dense and 
thick tissues (e.g., heart) (9,64). Hence, it is the most com-
monly used detergent in decellularization (47,59,65). Al-
though SDS cleaning power is stronger than many other de-
tergents, it also has more destructive effects compared with 
other detergents (66-69). A disadvantage of using SDS as a 
detergent is reducing the amount of GAG and growth fac-
tors from the ECM (43). Due to the strong tendency of SDS 
toward protein, it can disrupt protein-protein interactions. 
Thus it may have a role in the loss of collagen integrity and 
change in the ECM structure (70-72). Using SDS in different 
concentrations leads to various injuries on ECM levels (5). 
Previous studies on the vein and gums were examined vari-
ous concentrations of SDS that revealed optimized concen-
tration with the highest level of decellularization (29,72).

The destruction level of a detergent depends on its type, 
detergent and fabric duration of exposure, type of tissue and 
age of the tissue donor (43,73). Sodium deoxycholate is an 
another ionic detergent which used in decellularization, but it 
has more destructive power compared to SDS, and it is typi-
cally used in combination with bipolar detergents (74,75). 
Triton X-200, similar to SDS and sodium deoxycholate is 
used as an ionic detergent in the process of decellulariza-
tion (76-80).

Non-ionic Detergents

Non-ionic detergents have lower destructive effects on the 
structure of ECM. However, detergents are widely used in 
the process of decellularization. Non-ionic detergents can 
break down lipid-lipid bonds, but cannot destroy the pro-
tein-protein bonds (81). Triton X-100 is used as a non-ionic 
detergent in decellularization. This detergent has been used 
in decellularization of tissues such as liver (82-84), pericar-
dium (85), lung (7,86,87), gum (88) and skin (89).

This compound has biodegradable properties and a 
high ability to destroy and remove cells from the surface 
of ECM (90) and provide the conditions for the growth of 
cells. Some studies revealed the effects of Triton X-100 on 
decellularization of blood vessels, tendons, ligaments, myo-
cardium and aortic walls that no success was seen, while 
it has been successfully used in decellularization of heart 
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valves (47,48,91). These researches show that the use of Tri-
ton X-100 in decellularization has both said results. Many 
studies regarding decellularization have demonstrated that 
Triton X-100 eliminates GAG from ECM surface (92). How-
ever, in a study on decellularization of anterior cruciate liga-
ment (ACL), it was shown that this detergent does not have 
any harmful effects on GAG levels of ECM surface (47). 
Triton X-100 is known as the best detergent in the process of 
delipidation and compared to SDS, and other detergents such 
as sodium doxycycline lipase and even lipase have shown a 
much better performance (93,94).

Bipolar Detergents

Bipolar detergents have the properties of both ionic and 
non-ionic detergents that are mostly used in decellularization 
of thin tissues (95,96). Bipolar detergents such as CHAPS, 
sulfobetaine-10, and sulfobetaine-16 are used in the process 
of decellularization. For example, CHAPS were used in de-
cellularization of blood vessels (48) and sulfobetaine-10, 
and 16 sulfobetaine were applied in decellularization of 
nerves (15).

Chelates

These compounds are tightly combined with an ion. EDTA 
and EGTA are examples of these chemical compounds that 
are used in the process of decellularization. These chemi-
cal’s compositions destruct cell connections to collagen and 
fibronectin by separating ions such as Ca2+ and Mg2 (97-100). 
Chelating agents are usually used in combination with en-
zymes such as trypsin (9,52,101-103) or detergents (9,101) 
and do not have any application on its own (104). EDTA 
in the long term reduces the mechanical properties of the 
scaffold (105).

Organic Solvents

Tributyl phosphate (TBP) is one of the most widely used 
organic solvents in the process of decellularization. TBP per-
forms as a destructor of the protein structure. These chem-
ical’s compositions also have anti-viral properties. Using 
organic solvents such as TBP is also a suitable alternative for 
ionic and non-ionic detergents for thick tissues. One of the 
advantages of TBP compared to others is the minimal dam-
age that may cause to the mechanical properties of ECM. It 
is used in decellularization of dense tissues such as tendons 
and ligaments. Therefore, further studies are required in this 
field (17,47).

Effects of Decellularization on ECM

The process of decellularization may have some adverse ef-
fects on the ECM, including reduction of collagenous and 
non-collagenous proteins such as laminin, fibronectin, gly-
cosaminoglycans. It also removes water molecules attached 
to it and thereby reduces the elasticity of tissue. Removal of 
collagenous proteins as well decreases the mechanical prop-
erties of ECM (17,47).

Evaluation of Decellularization Process

For standard assessment of a method of tissue decellulariza-
tion, histological analysis, determination of the amount of 
DNA, GAG, biomechanical analysis, continuity of collage-
nous scaffolds, non-collagenous proteins are required.

Several methods are available to identify the effects of 
decellularization on the removal of cellular materials and on 
the ECM itself, for instance, hematoxylin-eosin staining to 
the investigation of histological analysis and Movat’s Pen-
tachrome staining for detecting the presence of cytoplasmic 
and ECM molecules.

A specific quantitative amount of cellular materials has 
not been determined in the process of decellularization al-
though it is possible to overcome the problem that based on 
laboratory research findings as well as in vivo responses to 
the reconstructed models. For instance, the amount of DNA 
in every mg of ECM should not be less than 50ng.

The amount of DNA fragments should be less than 200 bp, 
and nuclear materials should also stay undetected in 4’, 6-di-
amidino-2-phenylindole (DAPI) or hematoxylin-eosin stain-
ing because DNA directly causes an immune response in the 
host body (1,106,107). DNA density can also be identified 
by using fluorometric stainings such as Hoechst (108-110). 
DNA is present everywhere in the tissue and could be easily 
detected and used as an overall indicator for measuring the 
elimination of cell debris from the surface of the ECM (111). 
Immunohistochemistry is used as a staining for detecting the 
presence of non-collagenous proteins such as collagen, lami-
nin, fibronectin, glucose, GAG, actin, and myosin (47). Pyr-
roline, a major amino acid in the ECM structure is used as a 
standard indicator in assessing the amount of protein degra-
dations such as collagen and elastin (109,112). Evaluation of 
the effects of decellularization on the mechanical properties 
of ECM and cell debris on the ECM after the process has 
always been one of the main issues in this process. In pre-
vious studies, the effects of different detergents on the ECM 
were assessed, and it was demonstrated that these detergents 
cause damage to the ECM collagen and therefore, reduce the 
mechanical properties.

However, there are also exceptions, in studies on the use 
of Triton X-100 in the process of decellularization of ACL, 
it was revealed that Triton X-100 have not any destructive 
effects on ECM collagen (17)

CONCLUSION

The use of ECM as a biological scaffold in the past few years 
has been studied. Decellularization of the trachea and suc-
cessful deployment of its ECM in tracheal reconstruction has 
shown an excellent prospect in the field of tissue engineering 
by using bio-scaffolds. In order to obtain a healthy ECM, it is 
necessary to implement an optimized method with the lowest 
level of damage to the structure of ECM and lack of decrease in 
its mechanical properties as well as preserving important pro-
teins such as laminin, fibronectin, GAGs and growth factors. 
A suitable protocol should also be able to clear nuclear 
materials and cell debris from the ECM. The presence of these 
materials in terms of in-vivo conditions leads to host’s im-
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mune response. However, no protocol has been recorded with 
100% efficiency. This efficiency depends on some factors, in-
cluding the type of tissue, type of decellularization method 
as well as the composition of these methods. As mentioned 
earlier, a complete decellularization requires a combination 
of all three biological, chemical and physical methods. In the 
process of decellularization, detergents such as SDS play a 
key role. However, these detergents cause damage to collag-
enous and non-collagenous proteins, GAGs and growth fac-
tors. It also causes irreparable damage to the ECM structure.  
For this reason, it can be suggested to use di-ionic detergents 
(bipolar) that are less destructive compared to SDS. Even bi-
polar detergents could be used in combination with a low con-
centration of SDS for increased cleaning power of this cellular 
detergent. Hence, this review can helps clinicians to select the 
appropriate method in decellularization processing for achiev-
ing ECM as a scaffold in organ transplantation processes.
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